Interval linear regression analysis based on Minkowski difference - a bridge between traditional and interval linear regression models
نویسندگان
چکیده
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library In this paper, we extend the traditional linear regression methods to the (numerical input)-(interval output) data case assuming both the observation/measurement error and the indeterminacy of the input-output relationship. We propose three different models based on three different assumptions of interval output data. In each model, the errors are defined as intervals by solving the interval equation representing the relationship among the interval output, the interval function and the interval error. We formalize the estimation problem of parameters of the interval function so as to minimize the sum of square/absolute interval errors. Introducing suitable interpretation of minimization of an interval function, each estimation problem is well-formulated as a quadratic or linear programming problem. It is shown that the proposed methods have close relation to both traditional and interval linear regression methods which are formulated in different manners.
منابع مشابه
Interval linear regression
In this paper, we have studied the analysis an interval linear regression model for fuzzy data. In section one, we have introduced the concepts required in this thesis and then we illustrated linear regression fuzzy sets and some primary definitions. In section two, we have introduced various methods of interval linear regression analysis. In section three, we have implemented nu...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملDifferenced-Based Double Shrinking in Partial Linear Models
Partial linear model is very flexible when the relation between the covariates and responses, either parametric and nonparametric. However, estimation of the regression coefficients is challenging since one must also estimate the nonparametric component simultaneously. As a remedy, the differencing approach, to eliminate the nonparametric component and estimate the regression coefficients, can ...
متن کاملNew Approach in Fitting Linear Regression Models with the Aim of Improving Accuracy and Power
The main contribution of this work lies in challenging the common practice of inferential statistics in the realm of simple linear regression for attaining a higher degree of accuracy when multiple observations are available, at least, at one level of the regressor variable. We derive sufficient conditions under which one can improve the accuracy of the interval estimations at quite affordable ...
متن کاملA NOTE ON EVALUATION OF FUZZY LINEAR REGRESSION MODELS BY COMPARING MEMBERSHIP FUNCTIONS
Kim and Bishu (Fuzzy Sets and Systems 100 (1998) 343-352) proposeda modification of fuzzy linear regression analysis. Their modificationis based on a criterion of minimizing the difference of the fuzzy membershipvalues between the observed and estimated fuzzy numbers. We show that theirmethod often does not find acceptable fuzzy linear regression coefficients andto overcome this shortcoming, pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Kybernetika
دوره 42 شماره
صفحات -
تاریخ انتشار 2006